Carbonic acid

Carbonic acid
Identifiers
CAS number 463-79-6 YesY
ChemSpider 747
Properties
Molecular formula H2CO3
Molar mass 62.03 g/mol
Density 1.0 g/cm3 (dilute soln.)
Melting point

n/a

Solubility in water Exists only in solution
Acidity (pKa) see acidity of carbonic acid
 YesY (what is this?)  (verify)
Except where noted otherwise, data are given for materials in their standard state (at 25 °C, 100 kPa)
Infobox references
Not to be confused with carbolic acid, an antiquated name for phenol.

Carbonic acid is the organic compound with the formula H2CO3 (equivalently OC(OH)2). It is also a name sometimes given to solutions of carbon dioxide in water, which contain small amounts of H2CO3. The salts of carbonic acids are called bicarbonates (or hydrogen carbonates) and carbonates. It is a weak acid.

When dissolved in water, carbon dioxide exists in equilibrium with carbonic acid:

CO2 + H2O is in equilibrium with H2CO3

The hydration equilibrium constant at 25 °C is Kh = [H2CO3]/[CO2] = 1.70×10−3: hence, the majority of the carbon dioxide is not converted into carbonic acid, remaining as CO2 molecules. In the absence of a catalyst, the equilibrium is reached quite slowly. The rate constants are 0.039 s−1 for the forward reaction (CO2 + H2O → H2CO3) and 23 s−1 for the reverse reaction (H2CO3 → CO2 + H2O). Carbonic acid is used in the making of soft drinks, inexpensive and artificially carbonated sparkling wines, and other bubbly drinks. The addition of two equivalents of water to CO2 would give orthocarbonic acid, C(OH)4, which is unimportant in aqueous solution.

Contents

Role of carbonic acid in blood

Carbonic acid is an intermediate step in the transport of CO2 out of the body via respiratory gas exchange. The hydration reaction of CO2 is generally very slow in the absence of a catalyst, but red blood cells contain carbonic anhydrase, which both increases the reaction rate and dissociates a hydrogen ion (H+) from the resulting carbonic acid, leaving bicarbonate (HCO3-) dissolved in the blood plasma. This catalysed reaction is reversed in the lungs, where it converts the bicarbonate back into CO2 and allows it to be expelled. This equilibration plays an important role as a buffer in mammalian blood.

Role of carbonic acid in ocean chemistry

The oceans of the world have absorbed almost half of the CO2 emitted by humans from the burning of fossil fuels.[1]  The extra dissolved carbon dioxide has caused the ocean's average surface pH to shift by about 0.1 unit from pre-industrial levels.[2] This process is known as ocean acidification.

Acidity of carbonic acid

Carbonic acid is diprotic: it has two protons, which may dissociate from the parent molecule. Thus there are two dissociation constants, the first one for the dissociation into the bicarbonate (also called hydrogen carbonate) ion HCO3:

H2CO3 is in equilibrium with HCO3 + H+
Ka1 = 2.5×10−4 ; pKa1 = 3.60 at 25 °C.

This indicates that H2CO3 is a stronger acid than acetic acid and formic acid. Its high acidity reflects the influence of the electronegative oxygen substituent.

The second for the dissociation of the bicarbonate ion into the carbonate ion CO32−:

HCO3 is in equilibrium with CO32− + H+
Ka2 = 5.61×10−11 ; pKa2 = 10.33 at 25 °C and Ionic Strength = 0.0.

Care must be taken when quoting and using the first dissociation constant of carbonic acid. In aqueous solution carbonic acid only exists in equilibrium with carbon dioxide, and the concentration of H2CO3 is much lower than the dissolved CO2 concentration. Since it is not possible to distinguish between H2CO3 and dissolved CO2 (referred to as CO2(aq)) by conventional methods, H2CO3* is used to represent the two species when writing the aqueous chemical equilibrium equation. The equation may be rewritten as follows (c.f. sulfurous acid):

H2CO3* is in equilibrium with HCO3 + H+
Ka = 4.6×10−7(General Chemistry: An Integrated Approach Third Edition); pKa = 6.352 at 25 °C and Ionic Strength = 0.0.(NIST CRITICAL Database)

Whereas this pKa is quoted as the dissociation constant of carbonic acid, it is ambiguous: it might better be referred to as the acidity constant of dissolved carbon dioxide, as it is particularly useful for calculating the pH of CO2-containing solutions.

pH and composition of a carbonic acid solutions

At a given temperature, the composition of a pure carbonic acid solution (or of a pure CO2 solution) is completely determined by the partial pressure \scriptstyle p_{CO_2} of carbon dioxide above the solution. To calculate this composition, account must be taken of the above equilibria between the three different carbonate forms (H2CO3, HCO3 and CO32−) as well as of the hydration equilibrium between dissolved CO2 and H2CO3 with constant \scriptstyle K_h=\frac{[H_2CO_3]}{[CO_2]} (see above) and of the following equilibrium between the dissolved CO2 and the gaseous CO2 above the solution:

CO2(gas) is in equilibrium with CO2(dissolved) with \scriptstyle \frac{[CO_2]}{p_{CO_2}}=\frac{1}{k_\mathrm{H}} where kH=29.76 atm/(mol/L) at 25°C (Henry constant)

The corresponding equilibrium equations together with the \scriptstyle[H^+][OH^-]=10^{-14} relation and the charge neutrality condition \scriptstyle[H^+]=[OH^-]+[HCO_3^-]+2[CO_3^{2-}] result in six equations for the six unknowns [CO2], [H2CO3], [H+], [OH], [HCO3] and [CO32−], showing that the composition of the solution is fully determined by \scriptstyle p_{CO_2}. The equation obtained for [H+] is a cubic whose numerical solution yields the following values for the pH and the different species concentrations:

\scriptstyle p_{CO_2}
(atm)
pH [CO2]
(mol/L)
[H2CO3]
(mol/L)
[HCO3]
(mol/L)
[CO32−]
(mol/L)
1.0 × 10−8 7.00 3.36 × 10−10 5.71 × 10−13 1.42 × 1009 7.90 × 10−13
1.0 × 10−7 6.94 3.36 × 1009 5.71 × 10−12 5.90 × 1009 1.90 × 10−12
1.0 × 10−6 6.81 3.36 × 1008 5.71 × 10−11 9.16 × 1008 3.30 × 10−11
1.0 × 10−5 6.42 3.36 × 1007 5.71 × 1009 3.78 × 1007 4.53 × 10−11
1.0 × 10−4 5.92 3.36 × 1006 5.71 × 1009 1.19 × 1006 5.57 × 10−11
3.5 × 10−4 5.65 1.18 × 1005 2.00 × 1008 2.23 × 1006 5.60 × 10−11
1.0 × 10−3 5.42 3.36 × 1005 5.71 × 1008 3.78 × 1006 5.61 × 10−11
1.0 × 10−2 4.92 3.36 × 1004 5.71 × 1007 1.19 × 1005 5.61 × 10−11
1.0 × 10−1 4.42 3.36 × 1003 5.71 × 1006 3.78 × 1005 5.61 × 10−11
1.0 × 10+0 3.92 3.36 × 1002 5.71 × 1005 1.20 × 1004 5.61 × 10−11
2.5 × 10+0 3.72 8.40 × 1002 1.43 × 1004 1.89 × 1004 5.61 × 10−11
1.0 × 10+1 3.42 3.36 × 1001 5.71 × 1004 3.78 × 1004 5.61 × 10−11

Remark

As noted above, [CO32−] may be neglected for this specific problem, resulting in the following very precise analytical expression for [H+]:
\scriptstyle[H^+] \simeq \left( 10^{-14}+\frac  {K_hK_{a1}}{k_\mathrm{H}} p_{CO_2}\right)^{1/2}

Spectroscopic studies of carbonic acid

Theoretical calculations show that the presence of even a single molecule of water causes carbonic acid to revert to carbon dioxide and water. In the absence of water, gaseous carbonic acid is predicted to be stable with a half-life of 180,000 years.[3]

It has long been recognized that it is impossible to obtain pure carbonic acid at room temperatures (about 20 °C or about 70 °F). It can be generated by exposing a frozen mixture of water and carbon dioxide to high-energy radiation, and then warming to remove the excess water. The carbonic acid that remained was characterized by infrared spectroscopy. The fact that the carbonic acid was prepared by irradiating a solid H2O + CO2 mixture has given rise to suggestions that H2CO3 might be found in outer space, where frozen ices of H2O and CO2 are common, as are cosmic rays and ultraviolet light, to help them react.[3] The same carbonic acid polymorph (denoted beta-carbonic acid) was prepared by heating alternating layers of glassy aqueous solutions of bicarbonate and acid in vacuo, which causes protonation of bicarbonate, followed by removal of the solvent. Alpha-carbonic acid was prepared by the same technique using methanol rather than water as a solvent.

See also

References

References

  1. Sabine, C.L.; et al. (2004). " "The Oceanic Sink for Anthropogenic CO2". Science 305 (5682): 367–371. doi:10.1126/science.1097403. PMID 15256665. http://www.sciencemag.org/cgi/content/short/305/5682/367". 
  2. "Ocean Acidification Network". http://ioc3.unesco.org/oanet/FAQacidity.html. 
  3. 3.0 3.1 Loerting, T.; Tautermann, C.; Kroemer, R.T.; Kohl, I.; Mayer, E.; Hallbrucker, A.; Liedl, K. R. (2001). "On the Surprising Kinetic Stability of Carbonic Acid". Angew. Chem. Int. Ed. 39: 891–895. doi:10.1002/(SICI)1521-3773(20000303)39:5<891::AID-ANIE891>3.0.CO;2-E. 

External links